Гидравлический удар в трубопроводах
Гидравлический удар
Гидравлический удар — это колебательный быстротечный процесс, возникающий в упругом трубопроводе с капельной жидкостью, характеризующийся чередованием резких повышений и понижений давления.
Гидравлический удар возникает при резком изменении проходного сечения трубопровода, например при резком закрытии крана, или переключении гидрораспределителя в длинных трубопроводах.
Вычислить изменение давления при прямом гидравлическом ударе можно используя формулу Н.Е Жуковсокго.
Как протекает гидроудар?
Рассмотрим гидравлическую систему, состоящую из резервуара, наполненного жидкостью, трубопоровода длиной L и диаметром d, и шарового крана.
При резком перекрытии проходного сечения трубопровода частицы жидкости внезапно останавливаются преградой, их кинетическая энергия переходит в работу деформации жидкости и растяжению стенок трубы, жидкость уплотняется, а давление возрастает на величину ΔP.
На остановленные частицы наталкиваются следующие, их кинетическая энергии также переходит в деформацию. Таким образом образуется фронт возмущения, который со скоростью (a) движется по трубопроводу в направлении от крана.
К моменту времени t=L/a жидкость в во всей трубе становится заторможенной, а давление повышенным на величину ΔP. Начинается отток жидкость в резервуар, где давление теперь ниже.
Волна повышенного давления ΔP давления, отражается от резервуара волной противоположного знака -ΔP, начинается двигаться по направлению к крану.
К моменту t=2L/a в трубе установиться первоначальное давление, но это состояние неустойчивое.
Из-за инерционности среды у крана кинестетическая энергия будет в работу деформации, давление при этом упадет на величину ΔP, стенки трубы сузятся. Волна понижения давления на величину ΔP со скоростью a будет двигаться в направлении от крана. За фронтом волны скорость жидкости будет равна 0, а давление P-ΔP.
Волна -ΔP доходит до резервуара.
Волна отразится от резервуара волной противоположного знака +ΔP и со скоростью a будет двигаться к крану.
К моменту t=4L/a волна дойдет до задвижки, и будет наблюдаться ситуация имевшая место при закрытии крана. Получается, что 1 цикл гидравлического удара закончится.
Как отражается волна при гидроударе?
Получается, что при гироударе волна давления отражается от резервуара волной противоположного знака, а от глухой преграды — волной того же знака.
Основы гидравлики
Гидравлический удар
Гидравлическим ударом (гидроударом) называется резкое повышение давления в трубопроводе при внезапной остановке движущейся жидкости.
Скачок давления вызывает внезапная преграда на пути потока жидкости, и последствия этого явления зависят от энергии, которой обладает поток. Несмотря на то, что по представлению обывателя жидкостью невозможно «ударить», подобное явление может нанести настолько внушительный погром в русле (например, в трубопроводе) , которого не всегда удается достигнуть увесистой кувалдой.
Гидравлический удар может иметь место при быстром закрывании различных запорных устройств (задвижек, кранов) , при внезапной остановке насоса перекачивающего жидкость, и т.д.
Подобное нередко приводит к разрушению трубопроводов, арматуры и гидромашин, поскольку массивы подвижной жидкости, перемещающиеся в напорном режиме, могут нести в себе значительную кинетическую энергию.
Чтобы понять суть процессов, сопровождающих явление гидравлического удара, рассмотрим трубопровод, по которому движется жидкость со скоростью v (рис.1) . При этом кинетическая энергия потока прямо пропорциональна квадрату его скорости и массе перемещающейся по трубопроводу жидкости. Если принять условие неразрывности потока, то в длинных трубопроводах массивы движущейся жидкости могут достигать значительной величины, что в совокупности с высокой скоростью придает жидкости колоссальную энергию движения (кинетическую энергию) .
Если быстро закрыть установленный на трубопроводе кран, то слой жидкости, находящийся непосредственно у крана, останавливается. При этом кинетическая энергия частиц жидкости превращается в потенциальную и давление быстро возрастает. В результате происходят сжатие ближнего к крану слоя жидкости и деформация трубопровода.
В следующий момент остановится соседний слой, затем последующий и так по всей длине трубопровода.
Таким образом, жидкость в трубе останавливается не мгновенно, а через некоторый промежуток времени, который определяется соотношением:
где L — длина трубопровода, C — скорость распространения ударной волны.
В момент остановки последнего слоя жидкости (в точке А ) или в момент достижения ударной волны входного сечения трубопровода вся жидкость в трубопроводе окажется сжатой, скорости частиц жидкости равны нулю, а давление имеет максимальное значение. При этом через время Δtв точке А давление жидкости слева меньше, чем справа.
В этих условиях равновесие жидкости нарушается, и она начинает перемещаться из трубопровода в резервуар, при этом давление в трубопроводе понижается.
Через время Δt давление в трубопроводе станет меньше, чем было до закрытия крана, и жидкость из резервуара снова начнет перемещаться в трубопровод. Вследствие действия внутренних сопротивлений колебания давления в трубопроводе будут затухающими.
Давление жидкости при гидравлическом ударе определяется по формуле Н.Е. Жуковского:
где ρ — плотность жидкости.
Для чугунных и стальных водопроводных труб скорость распространения ударной волны принимается 1000. 1400 м/с.
Из формулы Жуковского следует, что при скорости воды (имеющей плотность ρ ≈ 1000 кг/м 3 ) в трубе v = 1 м/с, в момент резкого перекрытия трубы давление в ней возрастет на величину, равную 100. 140 кПа.
Гидравлический удар особенно опасен для длинных трубопроводов, в которых движутся значительные массы жидкости с большими скоростями, и внезапное уменьшение скорости (или резкая остановка) этой массы приводит к деформации трубопроводов и их разрушению.
Для предотвращения разрушения гидравлических систем применяются различные конструктивные устройства. Основными из них являются винтовые запорные устройства, предохранительные клапаны и воздушные колпаки (рис. 2) .
а — винтовые запорные устройства; б — предохранительные клапаны; в — воздушные колпаки
Винтовые запорные устройства просты, широко распространены для защиты трубопроводов от гидравлических ударов и обеспечивают достаточно продолжительное время перекрытия проходного сечения трубопровода.
Если необходимо быстро перекрыть трубопровод, применяются специальные устройства – предохранительные клапаны, воздушные колпаки и др.
Использование гидравлического удара в технике
Резкое повышение давления при гидравлическом ударе часто бывает весьма опасно. Однако человеческая мысль нашла применение и этому явлению. В 1796 г. была изобретена водоподъемная машина — гидравлический таран.
Гидравлический таран — весьма простое устройство, позволяющее подавать воду с некоторого горизонтального уровня h1 на более высокую отметку H2 , используя эффект гидравлического удара.
Устройство состоит (рис. 3) из: рабочей камеры 1 с двумя клапанами — ударным 8 и нагнетательным 2 , воздушного колпака 5 , питательной трубы 3 , соединяющей таран с водоемом 4 , нагнетательной трубы 6 , соединяющей таран с бассейном 7 , расположенным выше водоема.
Принцип работы гидравлического тарана
Для упрощения будем считать, что в начальный момент оба клапана тарана закрыты, избыточное давление в воздушном колпаке pr = ρgH , вода в водоеме неподвижна.
Рис. 3. Схема гидравлического тарана
Для запуска гидротарана необходимо открыть ударный клапан 8 . Вода начнет вытекать через этот клапан, а скорость течения воды в питательной трубе 3 будет постепенно увеличиваться от нуля до некоторой предельной величины vпр , которая должна соответствовать напору H и гидравлическим сопротивлениям в системе питательная труба — ударный клапан.
Одновременно со скоростным напором v 2 /2g будет расти и гидродинамическое давление, действующее на ударный клапан снизу. Когда значение этого давления создаст усилие, превышающее вес клапана, последний закроется и произойдет гидравлический удар.
Давление в питательной трубе резко возрастет, в результате откроется нагнетательный клапан 2 .
Вода начнет поступать в воздушный колпак 5 , сжимая в нем воздух, а из воздушного колпака по нагнетательному трубопроводу — в приемный бассейн.
В момент закрытия ударного клапана в питательной трубе 3 начнется волновой процесс, который приведет к уменьшению скорости и понижению давления в этой трубе. Поэтому спустя некоторое время после закрытия ударного клапана давление в питательной трубе уменьшится настолько, что нагнетательный клапан 2 закроется, а ударный клапан 8 автоматически откроется, и начнется новый цикл.
Таран работает автоматически, подавая воду порциями, а воздушный колпак сглаживает пульсацию воды в нагнетательной трубе, обеспечивая сравнительно равномерную подачу Q2 ее в верхний бассейн 7 . Однако большая часть воды Q1 , поступающей из водоема Q = Q1 + Q2 , сбрасывается через ударный клапан.
Отметим, что:
Q1 – расход воды через ударный клапан 8 ;
Q2 – расход воды через нагнетательную трубу 6 ;
Q = Q1 + Q2 — расход воды через питательную трубу 3 .
Запишем выражения для следующих мощностей (без учета потерь в соответствующих трубопроводах) :
мощность, затрачиваемая на приведение тарана в действие :
Nзатр = ρgQH1 ;
полезная мощность тарана :
Nпол = ρgQ2H2 ,
где H2 — полезная высота нагнетания.
Выразим КПД гидравлического тарана. Очевидно, что
Проанализируем выражение (2) .
Для данной конструкции тарана величины Q1 и Q2 будут определенными и постоянными, т.е.
Q2 = соnst и Q1 = const .
Таким образом, формулу (2) можно представить в виде:
Можно сделать вывод, что значения КПД тарана зависят от отношения H2/H1 .
При H2 = 0 , h = 0 ; при H1 → ∞ , h → 0 ; при H2 = H1 , h = С = Q2/Q .
Из анализа полученных результатов следует, что максимальное значение КПД тарана можно определить по формуле:
Вероятность гидравлического удара в системе теплоснабжения, причины и последствия
Журнал «Новости теплоснабжения» № 2, 2005 г., www.ntsn.ru
С.А. Иванов, инженер ООО «Термоизол», г. Вологда
Явление гидравлического удара (ГУ) в трубах водяных систем теплоснабжения хорошо известно как наиболее разрушительная по своим последствиям разновидность неустановившегося движения сетевой воды волнового характера. ГУ — это резкое изменение (увеличение или снижение) давления в трубах тепловой сети (ТС) и подключенным к ней приборам отопления. От силы ГУ (величины скачка давления) напрямую зависят его последствия: от незначительных повреждений до многометровых раскрытий стальных трубопроводов ТС и массового выхода из строя нагревательных приборов, требующих значительных материальных и трудовых затрат на восстановительные работы.
Причинами, вызывающими ГУ, могут быть:
□ включение сетевого насоса при неправильно собранной его тепловой схеме;
□ неверное маневрирование задвижками;
□ отключение или включение крупного потребителя, повлекшее скачкообразное изменение давления;
□ снижение давления в системе ниже уровня расчетного статического давления, вызвавшее вскипание (фазовый переход) теплоносителя в верхних точках системы;
□ перерыв в электропитании насосной установки с последующим ее самозапуском или срабатывание АВР насосов с большим запаздыванием по времени;
□ ошибочные действия обслуживающего персонала или несанкционированное вмешательство в работу системы посторонних лиц;
□ дефекты системы и другие причины, приведшие к резкому изменению давления сетевой воды в системе теплоснабжения.
При анализе потока отказов ТС должны выявляться факты ГУ, их причины, приниматься меры по исключению их повторения. Предотвращение причин возникновения ГУ в трубопроводах ТС — это основная задача повышения надежности систем теплоснабжения.
С точки зрения физики ГУ представляет необратимый вынужденный колебательный процесс, имеющий одну степень свободы ввиду значительного превышения длины трубопровода над его диаметром. С точки зрения термодинамики водяная ТС является гомогенной термодинамической системой со своими параметрами состояния. Скорость распространения ГУ в трубопроводе ТС приблизительно равна скорости звука в сетевой воде. Скорость распространения ГУ определяется по формуле Н.Е. Жуковского
Скорость распространения ГУ обратно пропорциональна диаметру трубопровода, зависит от толщины его стенок и параметров теплоносителя. Например, для стального трубопровода диаметром 57×4 мм скорость распространения ГУ в сетевой воде составляет 1355 м/с, а для трубопровода диаметром 1020×12 мм — 1060 м/с при тех же параметрах.
В теории ГУ за единицу времени принимают время «фазы удара», т.е. удвоенный промежуток времени пробега по трубопроводу ударной волной:
Течение жидкости при ГУ можно описать системой из 2-х волновых уравнений, описанных в[1].
Примеры возникновения ГУ
1. Рассмотрим пример ошибочного включения сетевого насоса типа СЭ-1250-140 при открытой напорной задвижке на магистраль Dу 500 мм, протяженностью 8 км. Магистраль заполнена водой и находится под расчетным статическим давлением 20 м вод. ст. Насос оснащен системой плавного пуска (ЧРП). Время разворота насоса до номинальной производительности 1200 м 3 /ч составляет 30 с. Оценим последствие воздействия на ТС при таком включении насоса.
Время распространения ГУ в трубопроводе ТС составит: T=L/a = 8000/1125=7,1 (c). Фаза удара составит:
Время разворота насоса до номинальных оборотов, составляющее около 30 с, больше времени «фазы удара». В этом случае имеет место «непрямой» ГУ в трубопроводе теплосети. Ударное воздействие напора в конце трубопровода в этом случае рассчитывается по формуле:
Подставив значения параметров в формулу (3), получим ; Н=32,7 м, это свидетельствует, что ГУ не вызовет разрушений трубопровода и арматуры, рассчитанных на 1,6 МПа, а также не повредит подключенных приборов отопления, рассчитанных на давление 0,5-0,6 МПа.
2. Рассмотрим случай пуска того же насоса типа СЭ-1250-140, не оснащенного системой плавного пуска, на ту же магистраль Dу 500 мм. Время разворота насосной установки до номинальной производительности составляет около 5 с. В этом случае ГУ называется «прямым» ударом, т.к. время разворота насоса меньше времени «фазы удара». Проведя расчет, аналогичный предыдущему, получим результат: Н = 353,8 м или 3,54 МПа, что свидетельствуето ГУ, который вызовет разрушения трубопровода и приведет к массовому повреждению отопительных приборов систем отопления потребителей.
3. Для наглядности и полноты представления возможных последствий ГУ рассмотрим еще один пример — это случай несанкционированного закрытия секционирующей запорной арматуры на магистрали Dу 500 мм как и в выше приведенном примере ТС. Для случая внезапного (время закрытия арматуры менее «фазы удара») прекращения движения сетевой воды по трубопроводу, движущейся со скоростью 1,7 м/с при расходе 1200 м 3 /ч, ударное воздействие потока (изменение напора) на стенки трубопровода рассчитывается по формуле Н.Е. Жуковского для прямого удара, м: ленных сетевых насосов; 0,633 — длительность отопительного периода для Вологодской обл.
Учитывая, что для стальных трубопроводов скорость распространения волны a приблизительно равно 1000 м/с, можно принять:
Внезапная принудительная остановка циркуляции в тепловой сети, вызванная закрытием секционной арматуры, приведет в данном примере к скачку давления на 1,7 МПа, что повлечет за собой самые серьезные последствия для трубопровода и отопительных приборов ТС.
Оценка вероятности возникновения ГУ
Как оценить вероятность возникновения ГУ в трубопроводах системы теплоснабжения? Эта вероятность равна произведению вероятностей событий возникновения причин, которые могут вызвать ГУ. Таких причин достаточно много и они перечислялись выше. Может происходить совпадение во времени 2-х или нескольких причин, способных привести к возникновению ГУ, но математическое ожидание случайных совпадений этих событий слишком мало. Большая вероятность возникновения одного из числа возможных событий, способного явиться причиной возникновения ГУ. В этом случае возникает необходимость ранжирования вероятных причин (событий) и выделения наиболее значимых. Рассмотрим вероятность включения центробежного сетевого насоса на открытую напорную задвижку, которая достаточно велика ввиду необходимости частого перехода по насосам (например, не менее 1 раза в месяц по графику) или по другим причинам. Воспользуемся методикой расчета вероятностей аварийных ситуаций на насосных подстанциях [2]. Эта вероятность может быть рассчитана по формуле:
где n = 1 — случай ошибочного включения сетевого насоса на открытую напорную задвижку; t=2 — число лет наблюдения; N = 3 — число установ-
Полученный результат вероятности ошибочных действий обслуживающего персонала в 2 раза превышает параметр потока отказов и поражает величиной значения вероятности возможной аварийной ситуации, т.е. почти в каждый отопительный сезон имеет место случай вероятного включения сетевого насоса на открытую напорную задвижку со всеми вытекающими последствиями. Зачастую случаи гидроударов выявить достаточно сложно по целому ряду причин, о которых в данной статье не идет речь, но они могут быть оценены специалистами для конкретной ТС и специфики ее эксплуатации.
1. Многие случаи появления неплотностей в ТС могут быть следствием ударного воздействия среды (увеличения или снижения) на ее элементы, причем место повреждения и причина, его вызвавшая, могут находиться на значительном расстоянии друг от друга.
2. При анализе потока отказов необходимо выявлять случаи ГУ, вероятность появления которых достаточна высока и реально существует.
3. В эксплуатационных инструкциях для обслуживающего персонала должно указываться время постепенного повышения (понижения) давления в трубопроводах ТС, которое должно превышать время «фазы удара», во избежание «прямого» ГУ.
4. Возможность проведения защитных мероприятий на трубопроводах ТС [3] и установка ЧРП на двигателях насосов (сетевых, подпиточ-ных), несомненно, положительно решает проблему возникновения ГУ и защиты трубопроводов и приборов ТС при условии их правильного проектирования, монтажа и обслуживания.
Литература
1. Тепло- и массообмен. Теплотехнический эксперимент: Справочник. Е.В. Аметистов, В.А. Григорьев, Б.Т. Емцев и др. /Под общ. ред. В.А. Григорьева и В.М. Зорина. -М.: Энергоиздат, 1982. -512 с.
2. Ионин А.А. Надежность систем тепловых сетей. — М.: Стройиздат, 1989. — 261 с.
3. Шмырев Е.М. О защите оборудования источников тепла, тепловых сетей, систем теплопотребления от недопустимых изменений давления сетевой воды и гидравлических ударов // Электрические станции, 1998. №5. С. 57-64.
Журнал Полимерные трубы — Технологии и материалы
Гидравлический удар в трубах: и вред, и польза
Сегодня речь пойдет о довольно грозном физическом явлении, которое в гидравлике имеет название гидравлический удар. Такая тема обусловлена, во-первых, бесспорной важностью этого явления во время эксплуатации систем водоснабжения и водоотведения, во-вторых, именно в этом году исполняется 110-я годовщина разработки теории и методики расчета гидравлических ударов в трубах выдающимся российским ученым Н.Е.Жуковским [ 1 ].
Так что же такое гидравлический удар? По определениям, приведенным в современных литературных источниках [ 2 ]:
Н. Е. Жуковский (1847–1921)
Гидравлический удар – это резкое, мгновенное (ударное) повышение или понижение давления в напорном трубопроводе, по которому движется жидкость (вода), ввиду резкого изменения во времени скорости ее движения. Например, при мгновенном перекрывании трубопровода запорным устройством, мгновенной остановке насосного агрегата, резком изменении внутреннего размера трубопровода с большого на меньший и т.п. Если резкое увеличение давления в трубопроводе превысит допустимую величину, трубопровод или арматура на нем получат порыв или повреждение.
Явление гидравлического удара в водопроводных трубах было известно с самого начала эксплуатации напорных трубопроводов. К тому же на первых водопроводах применяли обычные пробковые краны, которые мгновенно перекрывали поток воды, что вызывало появление гидроудара. Лишь со временем стали использовать более плавные, так называемые вентильные краны и винтовые задвижки. Почти каждый город, в котором был централизованный напорный водопровод, страдал от разрушений труб вследствие действия гидравлического удара. Разработка теории гидравлического удара и создание технических средств борьбы с этим грозным явлением имели большое значение. Нельзя сказать, что гидравлический удар не изучался до Н.Е.Жуковского. Даже в своей итоговой работе по этому вопросу он ссылается на некоторых иностранных и отечественных авторов, которые исследовали гидроудар и сопровождающие его явления. Достаточно вспомнить братьев Монгольфье, швейцарского изобретателя Э. Аргана или М. Бультона. Внес свой вклад в эти исследования и профессор Казанского университета И.С.Громека (1851–1889). Но приоритет Н.Е.Жуковского в этом вопросе бесспорен. Именно он, по инициативе руководства московского водопровода, возглавил проведение в 1897–1898 гг. большого комплекса научных исследований вопроса гидравлического удара на базе Алексеевской водокачки.
Исследования проводились на чугунных трубах диаметром 2, 4 и 6 дюймов, проложенных по поверхности земли на территории водокачки. Они соединялись с трубой главного водовода диаметром 24 дюйма, транспортирующего воду в Москву. При этом с помощью манометров и самописцев изучались давление и гидродинамика в трубах, распределение давления вдоль труб во время быстрого перекрывания трубопроводов заслонкой в конце. Выяснилось, что явление гидравлического удара объясняется возникновением и распространением вдоль труб ударных волн, вызванных сжатием воды и деформацией стенок труб. Благодаря исследованиям, выполненным инженерами Алексеевской водокачки: К.П.Карельских, В.В. Ольденбергером и И.Н. Березовским под руководством Н.Е.Жуковского, удалось создать довольно четкую теорию гидравлического удара и найти средства борьбы с этим явлением (использование воздушных колпаков и пружинных клапанов-гасителей давления). Н.Е.Жуковский предложил, в частности, формулу для определения минимального времени необходимого для закрывания запорного устройства, чтобы избежать или снизить эффект гидроудара до минимума:
Гидравлический удар в трубопроводах
Гидравлический удар может вызвать разрыв трубопроводов, разрушение деталей гидравлических машин и приборов, нарушение работы отдельных устройств гидросистем (реле времени, реле давления, распределителей, гидрозамков и др.).
Одним из основных способов предотвращения гидравлического удара служит замедление процесса перекрытия трубопроводов запорными устройствами.
Выше был рассмотрен случай возникновения гидравлического удара, вызванного мгновенным закрытием задвижки, когда время закрытия равно нулю .
В действительности закрытие задвижки происходит не мгновенно, а в течение конечного, хотя и малого времени. При этом ударное повышение давления будет зависеть от закона закрытия задвижки и в некоторых случаях будет меньше, чем вычисленное по формуле Жуковского.
Если в трубопроводе длиной волна повышенного давления движется со скоростью , то расстояние от задвижки до резервуара и обратно она пройдет за время , которое называется фазой гидравлического удара .
В зависимости от времени закрытия задвижки , по сравнению с фазой гидравлического удара , различают прямой и непрямой гидравлический удар.
Для прямого гидравлического удара характерно условие . В этом случае наибольшее повышение давления в результате гидравлического удара определяют по формулам (9.6) или (9.18).
При соотношении возникает непрямой гидравлический удар . При этом ударная отраженная волна возвращается от резервуара к еще не полностью закрытой задвижке, и удар будет значительно ослаблен.
Ударное повышение давления в трубопроводе для этого случая рассчитывают по приближенной зависимости
. (9.20)
Продолжительность закрытия задвижки, исходя из условия предотвращения гидравлического удара, может быть определена по формуле Жуковского
. (9.21)
Таким образом, применяя постепенно закрывающиеся гидравлические задвижки различных конструкций, можно устранить причины, вызывающие гидравлический удар в трубопроводах.
Разрушения трубопровода, вследствие гидравлического удара, можно избежать, если рассчитать толщину его стенки по величине давления, учитывающей (9.15), т.е.
, (9.22)
где – допускаемое напряжение растяжения.
Для ослабления вредного влияния гидравлического удара на прочность трубопровода, применяют различного типа предохранительные клапаны и воздушные колпаки, устанавливаемые вблизи запорных устройств, являющихся источником гидравлических ударов. Схема установки воздушного колпака на трубопроводе показана на рис. 9.3. В воздушном колпаке энергия, возникающая от ударного повышения давления, расходуется на сжатие воздуха в колпаке. По принципу действия предохранительные клапаны и воздушные колпаки амортизируют удары, возникающие в жидкости, отводя некоторый объем жидкости из трубопровода в момент удара. Кроме того, использование этих устройств позволяет локализовать распространение ударной волны в пределах расстояния от запорного устройства до места установки воздушного колпака или предохранительного клапана.
Примером практического использования гидравлического удара в полезных целях служит гидравлический таран.
ГИДРАВЛИЧЕСКИЙ УДАР В ТРУБОПРОВОДЕ
Гидравлическим ударом называют внезапное изменение давления в трубопроводе при резком изменении скорости потока.
Рассмотрим движение жидкости по трубе (рис. 1.61), перекрываемой в сечении п—п клапаном. Когда клапан открыт, в сечении п—п гидродинамическое давлениер определяется пьезометрическим на-
Если клапан постепенно закрывать, то давление в сечении п—п будет подниматься и при закрытом клапане достигнет значениярст = уН . Но если клапан перекрывать достаточно быстро, то давление будет меняться резко и произойдет гидравлический удар. В первой его фазе перед клапаном возникнет повышение давления на Ар, которое может во много раз превосходить/?ст. Возможен также и отрицательный гидравлический удар при открытии клапана или в качестве второй волны при перекрытии клапана, сменяющий волну повышения давления.
Рис. 1.61. Гидравлический удар в трубопроводе
Рассмотрим процесс, происходящий в трубопроводе при мгновенном закрытии клапана. Если бы жидкость была действительно несжимаема, то давление Ар увеличивалось до бесконечно большой величины. Но в действительности жидкость сжимаема и трубопровод не имеет абсолютной жесткости. Поэтому в момент перекрытия клапана остановится только ближайший к сечению п—п слой жидкости и давление в нем поднимется на Ар. Слой сжимается, а трубопровод в этом месте расширяется (раздувается). В следующий момент это же произойдет со следующим слоем, т.е. гидравлический удар будет распространяться вверх по трубопроводу в виде волны повышения давления со скоростью С вплоть до полной остановки жидкости от п—п до резервуара.
Но у сечения е—е, у резервуара, давление остаетсяpe = yh. Поэтому после остановки жидкости давление в трубопроводе у его свободного конца быстро падает. Волна понижения давления с той же скоростью С будет двигаться вниз к сечению п—п и достигнет его спустя время
Т = Это время называется фазой удара. Давление в п—п по инерции может упасть ниже нормального, процесс колебания давлений будет продолжаться, быстро затухая.
Задачу по определению Ар решил Н.Е. Жуковский.
Рассмотрим элементарный участок трубопровода, примыкающий к сечению п—п (рис. 1.62). После мгновенного перекрытия сечения п—п за время dt произойдет остановка отсека длиною dL. Масса отсека рсо dL = рсо Cdt.
Применим к движению этого отсека теорему об изменении количества движения (приращение количества движения массы равно импульсу действующих на эту массу сил за рассматриваемый промежуток времени).
Рис. 1.Б2. Схема для определения давления при гидравлическом ударе
Так как отсек жидкости остановился, то приращение количества движения в проекции на ось трубы равно —рсоdLx>, импульс силы, под действием которой произошло это изменение количества движения (т.е. остановка отсека), равен -Apwdt (направлено в сторону, противоположную движению).
так как — = С, получаем формулу Жуковского повышения давления dt
при прямом гидравлическом ударе:
Скорость С зависит от модуля объемного сжатия жидкости Е, плотности р жидкости, диаметра d, толщины б стенок трубопровода и от модуля упругости материала трубопровода:
где Eq — модуль объемной упругости жидкости; Е — модуль упругости материала, из которого изготовлен трубопровод.
Если считать трубопровод абсолютно жестким, то Е= оо и
Это формула скорости распространения звука в неорганической покоящейся жидкости.
Если трубопровод стальной, Е = 2 • 10 6 кг/см, а жидкость — вода, Е0 = 210 4 кг/см, тогда
т.е. С довольно велика и почти всегда больше 1000 м/с (при — Т, т.е. и’ ф 0, то имеет место непрямой удар. Если допустить линейное изменение скорости во времени, то повышение давления можно выразить так:
т.е. повышение давления уменьшается по сравнению с прямым ударом Т
Видим, что, увеличивая время закрытия t3, можно снижать Ар. Но часто требуется (при аварии) быстро перекрыть трубопровод. Гидравлический удар может наносить вред. Основным способом предотвращения гидроудара или снижения Ар является уменьшение фазы удара Т, т.е. сокращение L. Так, в напорных трубопроводах ГЭС устанавливают уравнительные резервуары перед напорными тоннелями. В водопроводной сети аналогичную роль выполняют воздушные колпаки и предохранительные клапаны.
Гидравлический удар: что это такое и как с этим бороться?
22 ноября 2018
Гидравлический удар представляет собой явление повышения давления жидкости в системе, вызванное крайне быстрым изменением скорости потока этой жидкости за очень малый промежуток времени. Чаще всего причинами возникновения гидроудара являются быстрое закрытие или открытие трубопроводной арматуры, а также остановка, пуск или изменение режима работы насосов. Есть и другие причины, но они не столь часты.
Возникновение в трубопроводе гидравлического удара влечет за собой разрушение трубопроводов, арматуры, насосов и оборудования, образование усталостных трещин и загрязнение окружающей среды.
Для вычисления повышения давления при гидроударе используется формула Н.Е. Жуковского:
- ρ — плотность жидкости, кг/м 3 ;
- с — скорость фронта ударной волны м/с;
- ∆v — изменение скорости жидкости при гидравлическом ударе, м/с.
Скорость фронта ударной волны:
- Ес — модуль упругости жидкости, кгс /см²;
- Ет — модуль упругости трубопровода, кгс/см²;
- t — толщина стенок трубопровода, м;
- DN — условный диаметр трубопровода, м;
В качестве примера произведем расчет гидроудара. Исходные данные: вода движется со скоростью 2 м/c по стальному трубопроводу с условным диаметром 500 мм с толщиной стенки 12 мм и длиной 3500 м.
Скорость фронта ударной волны
Увеличение давления при гидроударе
Максимально допустимое время реакции клапана
Таким образом, из расчетов можно сделать вывод, что из-за резкого закрытия задвижки возникает гидроудар, в результате которого развивается ударная волна, движущаяся со скоростью почти 1200 м/с, давление в трубопроводе возрастает на 23,7 бар — и все это происходит почти за 2 с.
Для предотвращения гидроудара применяют ряд методов:
- обеспечение плавного открытия или закрытия запорной арматуры;
- увеличение диаметра трубопровода;
- снижение скорости потока среды;
- обеспечение плавного пуска и остановки насосов;
- использование системы защиты от гидравлических ударов;
- удаление газов из трубопроводов.
Указанные методы активно используются производителями оборудования для систем гашения гидроударов.
Наиболее часто возникающая неисправность в системах перекачивания жидкости — включение насоса при закрытой магистральной задвижке. В этом случае давление очень быстро повышается и происходит разрушение или выход из строя составляющих элементов трубопровода. Для предотвращения аварии используется предохранительный клапан на воду, выполняющий аварийный сброс давления, модели «Гранрег» КАТ10/04, КАТ11/04, «Прегран» КПП. Такие клапаны предотвращают повышение давления, которое происходит при запуске насоса, быстром закрытии крана или задвижки или других действиях, приводящих к резкому скачку давления. Клапаны монтируются на отводе от трубопровода, сбрасывая излишнее давление в атмосферу или резервуар. Когда давление превышает безопасный уровень, клапан открывается сразу же. При нормализации давления запорный орган в клапане медленно закрывается.
Вторая частая причина аварий — резкий, незапланированный стоп работающего насоса. При этом в системе сначала возникает разрежение, затем возникает обратный гидроудар. В данном случае помогает установка клапана модели «Гранрег» КАТ10/13 или КАТ11/13. Управление выполняется двумя регуляторами, на которых выставляется нижний и верхний порог срабатывания. Клапан приводится в действие давлением воды в линии. Устанавливается на отводе от трубопровода, после обратного клапана, рядом с насосами. Регулятор срабатывает немедленно, когда давление в трубопроводе падает ниже статического уровня. Когда обратный поток достигает насоса, регулятор уже полностью открыт, поток сбрасывается через него, и всплеск давления ограничивается до безопасной величины. После этого регулятор медленно закрывается, предотвращая опорожнение трубопровода. Клапан также немедленно полностью открывается, когда давление превышает безопасный уровень, и медленно закрывается при падении давления в сети до нормального уровня.
Использование предохранительных клапанов позволяет увеличить сроки безаварийной работы трубопроводов за счет исключения возникновения гидроударов и сброса давления в системе при его повышении до критических значений. Использование коррозионностойких материалов для изготовления корпуса, запорного элемента и уплотнений также способствует увеличению срока службы.
Из характерных достоинств, которыми отличаются предохранительные клапана можно отметить:
- простую и надежную конструкцию;
- простоту монтажа и обслуживания оборудования;
- низкие значения местных сопротивлений;
- высокую пропускную способность.
Для обеспечения плавного пуска и остановки насосов в современных системах используются специальные клапаны с пилотным управлением для управления насосами — «Гранрег» КАТ10/11, 10/12, 11/11, 11/12. Принцип действия таких клапанов достаточно прост. Управление работой подобного оборудования осуществляется при помощи электрических сигналов.
При пуске насоса клапан плавно приоткрывается. Останов вызывает плавное закрытие.
Существуют специальные опции для подобных клапанов, которые позволяют увеличить время открытия/закрытия клапана, обеспечивая таким образом плавное регулирование внутрисетевого давления.
Еще одной из причин возникновения гидроударов в трубопроводе могут служить воздушные пробки. Для удаления газов из трубопроводов используются воздушные клапаны (воздухоотводчики). Воздушные клапаны эффективны и важны для предотвращения возникновения давления ниже атмосферного в трубопроводах. Стандартный автоматический воздушный клапан отводит газы из системы, образующиеся в процессе ее работы. Кроме того, следует понимать, что если у потока воды при движении по трубопроводу не возникает никаких преград, то скорость потока достигает большого значения. И если воздушный клапан неожиданно закроется, это приведет к мгновенной остановке водного потока. Внезапная остановка водяного потока превратит кинетическую энергию в энергетическое давление, что может вызвать гидроудар.
Воздушный клапан с функцией защиты от гидроудара серии «Гранрег» КАТ50–53 позволит предотвратить данный эффект.
Благодаря ограничению скорости потока воздуха, между потоком воды и непосредственно воздушным клапаном будет создаваться воздушная подушка, которая замедлит поток воды и предотвратит развитие гидроудара.
Способы борьбы с гидроударами не ограничиваются применением оборудования, рассматриваемого в данной статье. Для того, чтобы корректно подобрать оборудование, смодулировать систему и определить, в каких точках может возникнуть гидроудар, необходимо тщательно проанализировать состав системы, а так же режимы ее работы. В случае возникновения вопросов по подбору регулирующей арматуры просьба обращаться к инженерам отдела регулирующей арматуры компании АДЛ.
Квартирный гаситель гидравлических ударов
Общие сведения о гидравлическом ударе
Гидравлический удар – это скачкообразное изменение давление жидкости, протекающей в напорном трубопроводе, возникающее при резком изменении скорости потока. В более развернутом смысле, гидравлический удар представляет собой быстротечное чередование «скачков» и «провалов» давления, сопровождающееся деформацией жидкости и стенок трубы, а также акустическим эффектом, похожим на удар молотком по стальной трубе. При слабых гидравлических ударах звук проявляется в виде «металлических» щелчков, однако даже при таких, казалось бы, незначительных ударах давление в трубопроводе может возрастать весьма значительно.
Стадии гидравлического удара можно проиллюстрироват ь на следующем примере (рис.1): пусть на конце квартирного трубопровода, присоединенного к домовому стояку, установлен однорычажный кран или смеситель (именно такие смесители позволяют относительно быстро перекрывать поток).
Рис.1. Стадии гидравлического удара
При перекрытии крана происходят следующие процессы:
- Пока кран открыт, жидкость движется по квартирному трубопроводу со скоростью «ν ». При этом в стояке и квартирном трубопроводе давление одинаковое (p).
- При перекрытии крана и резком торможении потока кинетическая энергия потока переходит в работу деформации стенок трубы и жидкости. Стенки трубы растягиваются, а жидкость сжимается, что ведет к увеличению давления на величинуΔp (ударное давление). Зона, в которой произошло увеличение давления называется зоной сжатия ударной волной, а ее крайнее сечение называется фронтом ударной волны. Фронт ударной волны распространяется в сторону стояка со скоростью «с». Здесь хотелось бы отметить, что допущение о несжимаемости воды, принимаемое при гидравлических расчетах, в данном случае не применяется, т.к. реальная вода – сжимаемая жидкость, имеющая коэффициент объемного сжатия 4,9х10 -10 1/Па. То есть при давлении 20 400 бар (2040 МПа) объем воды уменьшается в два раза.
- Когда фронт ударной волны дойдет до стояка, вся жидкость в квартирном трубопроводе окажется сжатой, а стенки квартирного трубопровода – растянутыми.
- Объем жидкости в домовой системе гораздо больше, чем в квартирной разводке, поэтому, когда фронт ударной волны доходит до стояка, избыточное давление жидкости большей частью сглаживается за счет расширения сечения и включения в работу общего объема жидкости в домовой системе. Давление в квартирном трубопроводе начинает выравниваться со стояковым давлением. Но при этом квартирный трубопровод за счет упругости материала стенок восстанавливает свое первоначальное сечение, сжимая жидкость и выдавливая ее в стояк. Зона снятия деформации со стенок трубопровода распространяется к крану со скоростью «с».
- В момент, когда давление в квартирном трубопроводе будет равно первоначальному, также как и скорость жидкости, направление потока будет обратное («нулевая точка»).
- Теперь жидкость в трубопроводе со скоростью «ν » стремится «оторваться» от крана. Возникает «зона разряжения ударной волны». В этой зоне скорость потока нулевая, а давление жидкости становится ниже первоначального, что приводит к сжатию стенок трубы (уменьшению диаметра). Фронт зоны разряжения передвигается к стояку со скоростью «с». При значительной первоначальной скорости потока разряжение в трубе может привести к снижению давления ниже атмосферного, а также к нарушению неразрывности потока (кавитации). В этом случае в трубопроводе около крана появляется кавитационный пузырь, схлопывание которого приводит к тому, что давление жидкости в зоне отраженной ударной волны становится больше, чем этот же показатель в прямой ударной волне.
- При достижении фронта сжатия ударной волны стояка скорость потока в квартирном трубопроводе нулевая, а давление жидкости – ниже первоначального и ниже, чем давление в стояке. Стенки трубопровода сжаты.
- Перепад давлений между жидкостью в стояке и квартирном трубопроводе вызывает поступление жидкости в квартирный трубопровод и выравниванию давлений до первоначального значения. В связи с этим стенки трубы также начинают приобретать первоначальные очертания. Так образовывается отраженная ударная волна, и циклы снова повторяются до полного угасания. При этом промежуток времени, в течение которого проходят все стадии и циклы гидравлического удара, не превышает, как правило, 0,001–0,06 с. Количество циклов может быть различным и зависит от характеристик системы.
На рис. 2 стадии гидравлического удара показаны в графическом виде.
Рис. 2. Графики изменения давления при гидравлическом ударе.
График на рис. 2а показывает развитие гидравлического удара, когда давление жидкости в зоне разряжения ударной волны не падает ниже атмосферного (линия 0).
График на рис. 2б отображает ударную волну, зона разряжения которой находится ниже атмосферного давления, но гидравлическая сплошность среды не нарушается. В этом случае давление жидкости в зоне разряжения ниже атмосферного, но эффект кавитации не наблюдается.
График на рис .2в отображает случай, когда нарушается гидравлическая неразрывность потока, то есть образуется кавитационная зона, последующее схлопывание которой приводит к возрастанию давления в отраженной ударной волне.
Разновидности гидравлических ударов и основные расчетные положения
В зависимости от скорости, с которой происходит закрытие запорного органа на трубопроводе, гидравлический удар может быть «прямым» и непрямым». «Прямым» называется удар, при котором перекрытие потока происходит за время меньшее, чем период удара, то есть выполняется условие:
где Т3 – время закрытия запорного органа, с; L – длина трубопровода от запорного устройства до точки, в которой поддерживается постоянное давление (в квартире – до стояка), м; с – скорость ударной волны, м/с.
В противном случае гидравлический удар называется непрямым. При непрямом ударе скачок давления значительно меньше по величине, так как часть энергии потока демпфируется частичной утечкой через запорный орган.
В зависимости от степени перекрытия потока гидравлический удар может быть полным и неполным. Полным является удар, при котором запорный орган полностью перекрывает поток. Если же этого не происходит, то есть часть потока продолжает протекать через запорный орган, то гидравлический удар будет неполным. В этом случае расчетной скоростью для определения величины гидравлического удара станет разница скоростей потока до и после перекрытия. Величину повышения давления при прямом полном гидравлическом ударе можно определить по формуле Н.Е. Жуковского (в западной технической литературе формула приписывается Alievi и Michaud):
Δp = ρ · ν · c, Па,
где ρ – плотность транспортируемой жидкости, кг/м 3 ; ν – скорость транспортируемой жидкости до момента внезапного торможения, м/с; с – скорость распространения ударной волны, м/с.
В свою очередь скорость распространения ударной волны с определяется по формуле:
, м/c,
где c — скорость распространения звука в жидкости (для воды – 1425 м/с, для других жидкостей можно принимать по табл. 1); D – диаметр трубопровода, м; δ – толщина стенки трубы, м; Еж – объемный модуль упругости жидкости (можно принимать по табл. 2), Па; Ест – модуль упругости материала стенок трубы, Па (можно принимать по табл. 3).